Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Curr Med Sci ; 41(6): 1052-1064, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1588743

ABSTRACT

The ongoing Coronavirus disease 19 pandemic has likely changed the world in ways not seen in the past. Neutralizing antibody (NAb) assays play an important role in the management of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak. Using these tools, we can assess the presence and duration of antibody-mediated protection in naturally infected individuals, screen convalescent plasma preparations for donation, test the efficacy of immunotherapy, and analyze NAb titers and persistence after vaccination to predict vaccine-induced protective effects. This review briefly summarizes the various methods used for the detection of SARS-CoV-2 NAbs and compares their advantages and disadvantages to facilitate their development and clinical application.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Serological Testing/trends , COVID-19 Vaccines/pharmacology , Humans , Immunization, Passive , Neutralization Tests/trends , Pandemics/prevention & control , COVID-19 Serotherapy
2.
Front Immunol ; 12: 771242, 2021.
Article in English | MEDLINE | ID: covidwho-1559103

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic is a serious threat to global public health and social and economic development. Various vaccine platforms have been developed rapidly and unprecedentedly, and at least 16 vaccines receive emergency use authorization (EUA). However, the causative pathogen severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has continued to evolve and mutate, emerging lots of viral variants. Several variants have successfully become the predominant strains and spread all over the world because of their ability to evade the pre-existing immunity obtained after previous infections with prototype strain or immunizations. Here, we summarized the prevalence and biological structure of these variants and the efficacy of currently used vaccines against the SARS-CoV-2 variants to provide guidance on how to design vaccines more rationally against the variants.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Immune Evasion , SARS-CoV-2/immunology , Animals , COVID-19/virology , COVID-19 Vaccines/genetics , Humans , Immunity , SARS-CoV-2/genetics
3.
Curr Med Sci ; 41(6): 1081-1086, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1503610

ABSTRACT

OBJECTIVE: The ongoing COVID-19 pandemic warrants accelerated efforts to test vaccine candidates. To explore the influencing factors on vaccine-induced effects, antibody responses to an inactivated SARS-CoV-2 vaccine in healthy individuals who were not previously infected by COVID-19 were assessed. METHODS: All subjects aged 18-60 years who did not have SARS-CoV-2 infection at the time of screening from June 19, 2021, to July 02, 2021, were approached for inclusion. All participants received two doses of inactivated SARS-CoV-2 vaccine. Serum IgM and IgG antibodies were detected using a commercial kit after the second dose of vaccination. A positive result was defined as 10 AU/mL or more and a negative result as less than 10 AU/mL. This retrospective study included 97 infection-naïve individuals (mean age 35.6 years; 37.1% male, 62.9% female). RESULTS: The seropositive rates of IgM and IgG antibody responses elicited after the second dose of inactivated SARS-CoV-2 vaccine were 3.1% and 74.2%, respectively. IgG antibody levels were significantly higher than IgM levels (P<0.0001). Sex had no effect on IgM and IgG antibody response after the second dose. The mean anti-IgG level in older persons (⩾42 years) was significantly lower than that of younger recipients. There was a significantly lower antibody level at > 42 days compared to that at 0-20 days (P<0.05) and 21-31 days (P<0.05) after the second dose. CONCLUSION: IgG antibody response could be induced by inactivated SARS-CoV-2 vaccine in healthy individuals (>18 years), which can be influenced by age and detection time after the second dose of vaccination.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/pharmacology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Inactivated/pharmacology , Adolescent , Adult , Age Factors , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , China/epidemiology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pandemics , Retrospective Studies , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Young Adult
4.
Allergy ; 76(2): 551-561, 2021 02.
Article in English | MEDLINE | ID: covidwho-1140085

ABSTRACT

BACKGROUND: The missing asymptomatic COVID-19 infections have been overlooked because of the imperfect sensitivity of the nucleic acid testing (NAT). Globally understanding the humoral immunity in asymptomatic carriers will provide scientific knowledge for developing serological tests, improving early identification, and implementing more rational control strategies against the pandemic. MEASURE: Utilizing both NAT and commercial kits for serum IgM and IgG antibodies, we extensively screened 11 766 epidemiologically suspected individuals on enrollment and 63 asymptomatic individuals were detected and recruited. Sixty-three healthy individuals and 51 mild patients without any preexisting conditions were set as controls. Serum IgM and IgG profiles were further probed using a SARS-CoV-2 proteome microarray, and neutralizing antibody was detected by a pseudotyped virus neutralization assay system. The dynamics of antibodies were analyzed with exposure time or symptoms onset. RESULTS: A combination test of NAT and serological testing for IgM antibody discovered 55.5% of the total of 63 asymptomatic infections, which significantly raises the detection sensitivity when compared with the NAT alone (19%). Serum proteome microarray analysis demonstrated that asymptomatics mainly produced IgM and IgG antibodies against S1 and N proteins out of 20 proteins of SARS-CoV-2. Different from strong and persistent N-specific antibodies, S1-specific IgM responses, which evolved in asymptomatic individuals as early as the seventh day after exposure, peaked on days from 17 days to 25 days, and then disappeared in two months, might be used as an early diagnostic biomarker. 11.8% (6/51) mild patients and 38.1% (24/63) asymptomatic individuals did not produce neutralizing antibody. In particular, neutralizing antibody in asymptomatics gradually vanished in two months. CONCLUSION: Our findings might have important implications for the definition of asymptomatic COVID-19 infections, diagnosis, serological survey, public health, and immunization strategies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Carrier State/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19 Testing/methods , Carrier State/blood , Carrier State/diagnosis , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.09.20149633

ABSTRACT

ImportanceAsymptomatic COVID-19 infections have a long duration of viral shedding and contribute substantially to disease transmission. However, the missing asymptomatic cases have been significantly overlooked because of imperfect sensitivity of nucleic acid testing. We aimed to investigate the humoral immunity in asymptomatics, which will help us develop serological tests and improve early identification, understand the humoral immunity to COVID-19, and provide more rational control strategies for the pandemic. ObjectiveTo better control the pandemic of COVID-19, dynamics of IgM and IgG responses to 23 proteins of SARS-CoV-2 and neutralizing antibody in asymptomatic COVID-19 infections after exposure time were investigated. Design, setting, and participants63 asymptomatic individuals were screened by RT-qPCR and ELISA for IgM and IgG from 11,776 personnel returning to work, and close contacts with the confirmed cases in different communities of Wuhan by investigation of clusters and tracing infectious sources. 63 healthy contacts with both negative results for NAT and antibodies were selected as negative controls. 51 mild patients without any preexisting conditions were also screened as controls from 1056 patients during hospitalization in Tongji Hospital. A total of 177 participants were enrolled in this study and serial serum samples (n=213) were collected. The research was conducted between 17 February 2020 and 28 April 2020. Serum IgM and IgG profiles of 177 participants were further probed using a SARS-CoV-2 proteome microarray. Neutralizing antibody responses in different population were detected by a pseudotyped virus neutralization assay system. The dynamics of IgM and IgG antibodies and neutralizing antibodies were analyzed with exposure time or symptoms onset. ResultsAsymptomatics were classified into four subgroups based on NAT and serological tests. In particular, only 19% had positive NAT results while approximately 81% detected positive IgM/IgG responses. Comparative SARS-CoV-2 proteome microarray further demonstrated that there was a significantly difference of antibody dynamics responding to S1 or N proteins among three populations, although IgM and IgG profiles could not be used to differentiate them. S1 specific IgM responses were elicited in asymptomatic individuals as early to the seventh day after exposure and peaked on days from 17d to 25d, which might be used as an early diagnostic biomarker and give an additional 36.5% seropositivity. Mild patients produced stronger both S1 specific IgM and neutralizing antibody responses than asymptomatic individuals. Most importantly, S1 specific IgM/IgG responses and the titers of neutralizing antibody in asymptomatic individuals gradually vanished in two months. Conclusions and relevanceOur findings might have important implications for the definition of asymptomatic COVID-19 infections, diagnosis, serological survey, public health and immunization strategies.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL